US 9,916,095 B2

41

readable medium, such as a CD-ROM, a volatile memory, a
non-volatile memory, ROM, RAM, or any other suitable
storage device.

The processing capability of the system 100 may be
distributed among multiple entities, such as among multiple
processors and memories, optionally including multiple
distributed processing systems. Parameters, databases, and
other data structures may be separately stored and managed,
may be incorporated into a single memory or database, may
be logically and physically organized in many different
ways, and may implemented with different types of data
structures such as linked lists, hash tables, or implicit storage
mechanisms. Logic, such as programs or circuitry, may be
combined or split among multiple programs, distributed
across several memories and processors, and may be imple-
mented in a library, such as a shared library (for example, a
dynamic link library (DLL)).

All of the discussion, regardless of the particular imple-
mentation described, is exemplary in nature, rather than
limiting. For example, although selected aspects, features, or
components of the implementations are depicted as being
stored in memories, all or part of the system 100 or systems
may be stored on, distributed across, or read from other
computer readable storage media, for example, secondary
storage devices such as hard disks, flash memory drives,
floppy disks, and CD-ROMs. Moreover, the various mod-
ules and screen display functionality is but one example of
such functionality and any other configurations encompass-
ing similar functionality are possible.

The respective logic, software or instructions for imple-
menting the processes, methods and/or techniques discussed
above may be provided on computer readable storage media.
The functions, acts or tasks illustrated in the figures or
described herein may be executed in response to one or more
sets of logic or instructions stored in or on computer
readable media. The functions, acts or tasks are independent
of the particular type of instructions set, storage media,
processor or processing strategy and may be performed by
software, hardware, integrated circuits, firmware, micro
code and the like, operating alone or in combination. Like-
wise, processing strategies may include multiprocessing,
multitasking, parallel processing and the like. In one
embodiment, the instructions are stored on a removable
media device for reading by local or remote systems. In
other embodiments, the logic or instructions are stored in a
remote location for transfer through a computer network or
over telephone lines. In yet other embodiments, the logic or
instructions are stored within a given computer, central
processing unit (“CPU”), graphics processing unit (“GPU”),
or system.

Furthermore, although specific components are described
above, methods, systems, and articles of manufacture
described herein may include additional, fewer, or different
components. For example, a processor may be implemented
as a microprocessor, microcontroller, application specific
integrated circuit (ASIC), discrete logic, or a combination of
other type of circuits or logic. Similarly, memories may be
DRAM, SRAM, Flash or any other type of memory. Flags,
data, databases, tables, entities, and other data structures
may be separately stored and managed, may be incorporated
into a single memory or database, may be distributed, or may
be logically and physically organized in many different
ways. The components may operate independently or be part
of a same program or apparatus. The components may be
resident on separate hardware, such as separate removable
circuit boards, or share common hardware, such as a same
memory and processor for implementing instructions from

40

45

50

55

42

the memory. Programs may be parts of a single program,
separate programs, or distributed across several memories
and processors.

Although specific steps of methods are illustrated in flow
diagrams, additional, fewer, or different steps may be
included in the illustrated methods. In addition, the steps
may be performed in an order different than illustrated.

A second action may be said to be “in response to” a first
action independent of whether the second action results
directly or indirectly from the first action. The second action
may occur at a substantially later time than the first action
and still be in response to the first action. Similarly, the
second action may be said to be in response to the first action
even if intervening actions take place between the first
action and the second action, and even if one or more of the
intervening actions directly cause the second action to be
performed. For example, a second action may be in response
to a first action if the first action sets a flag and a third action
later initiates the second action whenever the flag is set.

To clarify the use of and to hereby provide notice to the
public, the phrases “at least one of <A>, <B>, . .. and <N>”
or “at least one of <A>, <B>, <N>, or combinations thereof”
or “<A>, <B>, ... and/or <N>" are defined by the Applicant
in the broadest sense, superseding any other implied defi-
nitions hereinbefore or hereinafter unless expressly asserted
by the Applicant to the contrary, to mean one or more
elements selected from the group comprising A, B, . . . and
N. In other words, the phrases mean any combination of one
or more of the elements A, B, . . . or N including any one
element alone or the one element in combination with one or
more of the other elements which may also include, in
combination, additional elements not listed.

While various embodiments have been described, it will
be apparent to those of ordinary skill in the art that many
more embodiments and implementations are possible.
Accordingly, the embodiments described herein are
examples, not the only possible embodiments and imple-
mentations.

What is claimed is:

1. A system comprising:

a memory comprising a mapping of a first portion of a
memory-mapped file to a virtual address for a first
process, wherein the memory-mapped file comprises
virtual memory backed by a file; and

a processor configured to:

map a second portion of the memory-mapped file to the
virtual address for a second process based on the
second process being forked from the first process,
wherein the first and second portions of the memory-
mapped file are backed by the file; and

write data from the first and second portions of the
memory-mapped file to corresponding first and second
portions of the file that backs the memory-mapped file.

2. The system of claim 1, wherein the processor is
configured to create a copy of data associated with the first
portion of the memory-mapped file in response to a write to
the virtual address by the first process or the second process.

3. The system of claim 1, wherein the processor is
configured to create a copy of data associated with the first
portion of the memory-mapped file when the second process
is forked from the first process.

4. The system of claim 1, wherein the processor is
configured to create a copy of data associated with the first
portion of the memory-mapped file in response to a memory
access operation on the virtual address by the first process or
the second process.

5. The system of claim 1, wherein the file is a pseudo file.



US 9,916,095 B2

43

6. A method for providing fork-safe memory allocation
from memory-mapped files, the method comprising:

allocating a first portion of a memory-mapped file to a
virtual address for a first process;

allocating a second portion of the memory-mapped file to
the virtual address for a second process based on the
second process being a child of the first process,
wherein the first portion of the memory-mapped file
and the second portion of the memory-mapped file are
mapped to a first offset and a second offset, respec-
tively, of a file that backs the memory-mapped file; and

writing contents of the first and second portions of the
memory-mapped file to corresponding first and second
portions of the file that backs the memory-mapped file.

7. The method of claim 6, further comprising selecting the
second offset of the file for the second portion of the
memory-mapped file when the virtual address is accessed
and/or written by the child of the first process.

8. The method of claim 6, wherein the file includes a first
file and a second file, and wherein the first portion of the
memory-mapped file is mapped to the first offset of the first
file and the second portion is mapped to the second offset of
the second file.

9. The method of claim 6, further comprising encrypting
file data stored in a primary memory in response to a write
to the virtual address before writing the encrypted file data
from the primary memory to the file that backs the memory-
mapped file.

10. The method of claim 6 further comprising mapping
the memory-mapped file to a pseudo file, and translating
reads and writes to the pseudo file into reads and writes over
a network to a memory appliance instead of accessing data
in a file system.

11. The method of claim 10, wherein the translating
comprises reading from and/or writing to memory of the
memory appliance via a memory access protocol indepen-
dently of a central processing unit of the memory appliance.

12. The method of claim 6, wherein the file includes an
interface that provides access over a network to a corre-
sponding area of primary memory of a memory appliance.

13. An apparatus comprising:

a processor; and

a memory, the memory comprising:

a first virtual address space for a first process executed by
the processor;

a second virtual address space for a second process
executed by the processor, wherein a virtual address in
the first virtual address space is also in the second
virtual address space;

at least a subset of a memory-mapped file, the memory-
mapped file comprising a first portion and a second
portion that include virtual memory backed by a file;
and

a memory allocation module configured to map the virtual
address in the first virtual address space for the first
process to the first portion of the memory-mapped file
and to map the virtual address in the second virtual
address space for the second process to the second
portion of the memory-mapped file based on the second
process being a child of the first process, wherein the
memory allocation module is further configured to
write contents of the first and second portions of the
memory-mapped file to corresponding first and second
portions of the file that backs the memory-mapped file.

10

15

20

25

30

35

40

45

50

55

60

44

14. The apparatus of claim 13, wherein the memory
allocation module is further configured to encrypt data
associated with the first portion or the second portion of the
memory-mapped file before or as the data is written to the
memory-mapped file, wherein the memory-mapped file
includes virtual memory assigned to a pseudo file.

15. The apparatus of claim 14 wherein the memory
allocation module is further configured to read the encrypted
data from the memory-mapped file and decrypt the
encrypted data after or as the encrypted data is read from the
memory-mapped file.

16. The apparatus of claim 13, wherein the memory
allocation module comprises executable instructions
included in an operating system.

17. The apparatus of claim 13, wherein the memory
allocation module comprises executable instructions
included in a kernel or kernel module.

18. The apparatus of claim 13, wherein the memory
allocation module comprises executable instructions
included in a user library.

19. The apparatus of claim 13, wherein the memory-
mapped file is mapped to an interface configured to provide
access over a network to a corresponding area of primary
memory of a memory appliance.

20. The apparatus of claim 19, wherein access over the
network to the corresponding area of primary memory of the
memory appliance is via a Remote Direct Memory Access
(RDMA) protocol and is independent of a central processing
unit of the memory appliance.

21. The apparatus of claim 13, wherein the first process
and/or the second process are included in a container, a jail,
and/or a zone.

22. An apparatus comprising:

a processor; and

a memory, the memory comprising:

a first virtual address space for a first process executed by
the processor;

a second virtual address space for a second process
executed by the processor, wherein a virtual address in
the first virtual address space is also in the second
virtual address space;

at least a subset of a memory-mapped file, the memory-
mapped file comprising a first portion and a second
portion that include virtual memory backed by a file;
and

a memory allocation module configured to map the virtual
address in the first virtual address space for the first
process to the first portion of the memory-mapped file
and to map the virtual address in the second virtual
address space for the second process to the second
portion of the memory-mapped file based on the second
process being a child of the first process,

wherein the memory allocation module is further config-
ured to encrypt data associated with the first portion or
the second portion of the memory-mapped file before
or as the data is written to the memory-mapped file,
wherein the memory-mapped file includes virtual
memory assigned to a pseudo file, and

wherein the memory allocation module is further config-
ured to read the encrypted data from the memory-
mapped file and decrypt the encrypted data after or as
the encrypted data is read from the memory-mapped
file.



