US 8,307,154 B2

17

chassis, multiple motherboards in multiple chassis, or a het-
erogeneous combination of these. The memory 110 used to
hold storage volumes and snapshot volumes may be distrib-
uted across multiple subsystems in various ways. For
example, the first memory cache 170 may be located in one
sub-system, while the corresponding second memory cache
180 may be located in one or more other sub-systems. When
sub-systems are installed in different geographic locations, or
are associated with different clients, the storage system 100
may be used to perform rapid data migration, such as a migra-
tion of a virtual machine from one compute node to another.
Similarly, the cache allocated to each volume may be spread
and/or duplicated across multiple such sub-systems to pro-
vide increased data protection through redundancy and/or
dispersion, or increased application performance through
multiple points of access. Such spreading/duplication may be
accomplished using error-correcting codes, such as used in
RAID (redundant array of inexpensive disks) systems.

The storage system 100 may be implemented in many
different ways. For example, although some features are
shown stored in computer-readable memories (e.g., as logic
implemented as computer-executable instructions or as data
structures in memory), all or part of the system and its logic
and data structures may be stored on, distributed across, or
read from other machine-readable media. The media may
include hard disks, floppy disks, CD-ROMs, a signal, such as
a signal received from a network or received over multiple
packets communicated across the network.

The processing capability of the storage system 100 may
be distributed among multiple entities, such as among mul-
tiple processors and memories, optionally including multiple
distributed processing systems. Parameters, databases, and
other data structures may be separately stored and managed,
may be incorporated into a single memory or database, may
be logically and physically organized in many different ways,
and may implemented with different types of data structures
such as linked lists, hash tables, or implicit storage mecha-
nisms. Logic, such as programs or circuitry, may be combined
or split among multiple programs, distributed across several
memories and processors, and may be implemented in a
library, such as a shared library (for example, a dynamic link
library (DLL)).

All of the discussion, regardless of the particular imple-
mentation described, is exemplary in nature, rather than lim-
iting. For example, although selected aspects, features, or
components of the implementations are depicted as being
stored in memories, all or part of systems and methods con-
sistent with the innovations may be stored on, distributed
across, or read from other computer-readable media, for
example, secondary storage devices such as hard disks,
floppy disks, and CD-ROMs; a signal received from a net-
work; or other forms of ROM or RAM either currently known
or later developed. Moreover, the various modules and screen
display functionality is but one example of such functionality
and any other configurations encompassing similar function-
ality are possible.

Furthermore, although specific components of innovations
were described, methods, systems, and articles of manufac-
ture consistent with the innovation may include additional or
different components. For example, a processor may be
implemented as a microprocessor, microcontroller, applica-
tion specific integrated circuit (ASIC), discrete logic, or a
combination of other type of circuits or logic. Similarly,
memories may be DRAM, SRAM, Flash or any other type of
memory. Flags, data, databases, tables, entities, and other
data structures may be separately stored and managed, may
be incorporated into a single memory or database, may be

20

25

30

40

45

60

18

distributed, or may be logically and physically organized in
many different ways. Programs may be parts of a single
program, separate programs, or distributed across several
memories and processors.

The respective logic, software or instructions for imple-
menting the processes, methods and/or techniques discussed
above may be provided on computer-readable media or
memories or other tangible media, such as a cache, buffer,
RAM, removable media, hard drive, other computer readable
storage media, or any other tangible media or any combina-
tion thereof. The tangible media include various types of
volatile and nonvolatile storage media. The functions, acts or
tasks illustrated in the figures or described herein may be
executed in response to one or more sets of logic or instruc-
tions stored in or on computer readable media. The functions,
acts or tasks are independent of the particular type of instruc-
tions set, storage media, processor or processing strategy and
may be performed by software, hardware, integrated circuits,
firmware, micro code and the like, operating alone or in
combination. Likewise, processing strategies may include
multiprocessing, multitasking, parallel processing and the
like. In one embodiment, the instructions are stored on a
removable media device for reading by local or remote sys-
tems. In other embodiments, the logic or instructions are
stored in a remote location for transfer through a computer
network or over telephone lines. In yet other embodiments,
the logic or instructions are stored within a given computer,
central processing unit (“CPU”), graphics processing unit
(“GPU™), or system.

While various embodiments of the innovation have been
described, it will be apparent to those of ordinary skill in the
art that many more embodiments and implementations are
possible within the scope of the innovation. Accordingly, the
innovation is not to be restricted except in light of the attached
claims and their equivalents.

What is claimed is:

1. A storage system to form at least one snapshot of at least
one storage volume comprising:

a storage hardware interface;

a memory; and

at least one processor in communication with the memory

and the storage hardware interface, the memory com-

prising:
a first solid state memory cache;
a second solid state memory cache, the first and second
solid state memory caches being addressable with the
atleast one processor in a common address space; and
storage controller logic executable with the at least one
processor to:
provide block-level access to the at least one storage
volume over the storage hardware interface;

store all data blocks of the at least one storage volume
in the first solid state memory cache; and

form the at least one snapshot of the at least one
storage volume, all data blocks of the at least one
snapshot being stored in the second solid state
memory cache.

2. The storage system of claim 1, wherein the storage
controller logic executable to form the at least one snapshot is
further executable to copy all data blocks of the at least one
storage volume from the first solid-state memory cache to the
second solid-state memory cache.

3. The storage system of claim 2, wherein the storage
controller logic is executable with the at least one processor
to:



US 8,307,154 B2

19

track dirty blocks written to the at least one storage volume
during a time period in which all data blocks of the at
least one storage volume are copied to the second solid-
state memory cache;

stop acceptance of write requests, the write requests being

for the at least one storage volume;

copy the dirty blocks to the second solid-state memory

cache; and

resume the acceptance of write requests after the dirty

blocks are copied.

4. The storage system of claim 3, wherein the storage
controller logic is executable with the at least one processor to
track the dirty blocks based on adjusted region descriptors.

5. The storage system of claim 1, further comprising a
memory controller and a system bus, wherein the at least one
processor and the memory controller are coupled to the sys-
tem bus, the memory controller is coupled to the memory, and
the at least one processor is in communication with the
memory through the memory controller.

6. The storage system of claim 1, further comprising a
single block storage device, the single block storage device
comprising the memory, the at least one processor, and the
storage hardware interface.

7. The storage system of claim 1, wherein the storage
controller logic is executable with the at least one processor to
provide the block-level access in accordance with a storage
protocol.

8. A tangible computer-readable storage medium encoded
with computer executable instructions, the computer execut-
able instructions executable with at least one processor, the
computer-readable medium comprising instructions execut-
able to provide block-level access to a storage volume over a
storage hardware interface in accordance with a storage pro-
tocol, the instructions executable to provide the block-level
access including:

instructions executable to provide the storage volume in a

first memory cache, the first memory cache comprising
all data stored in the storage volume; and

instructions executable to form a snapshot of the storage

volume in a second memory cache, the second memory
cache comprising all data stored in the snapshot of the
storage volume, the first and second memory caches
being addressable by the at least one processor.

9. The tangible computer-readable storage medium of
claim 8, wherein the instructions executable to form the snap-
shot of the storage volume further comprise:

instructions executable to determine a first memory loca-

tion at which at least one block of the storage volume is
stored in the first memory cache;

instructions executable to determine a second memory

location at which at least one block of the snapshot is
stored in the second memory cache, the at least one
block of the snapshot corresponding to the at least one
block of the storage volume; and

instructions executable to perform a memory copy com-

mand, the memory copy command executable with the
at least one processor to copy data stored at the first
memory location to the second memory location.

10. The tangible computer-readable storage medium of
claim 8, wherein the instructions executable to form the snap-
shot of the storage volume further comprise:

instructions executable to reject write requests received

after the snapshot of the storage volume is initiated but
before the snapshot of the storage volume is complete;
and

10

15

20

25

30

40

45

50

55

60

65

20

instructions executable to resume acceptance of write
requests received after the snapshot of the storage vol-
ume is complete.

11. The tangible computer-readable storage medium of
claim 8, wherein the instructions executable to form the snap-
shot of the storage volume further comprise:

instructions executable to delay writes to the storage vol-

ume requested in write requests received after the snap-
shot of the storage volume is initiated; and

instructions executable to perform the writes after the snap-

shot of the storage volume is complete.

12. The tangible computer-readable storage medium of
claim 8, wherein the storage volume is a configured area of
storage accessible at the block level via a storage protocol.

13. The tangible computer-readable storage medium of
claim 8, wherein the at least one processor is configured to
address the first and second memory cache caches over a
system bus.

14. The tangible computer-readable storage medium of
claim 8, wherein the instructions executable to form the snap-
shot of the storage volume further comprise instructions
executable to provide block-level access to a snapshot vol-
ume, wherein all data blocks of the snapshot volume are
mapped to the snapshot of the storage volume.

15. A computer-implemented method to form a snapshot
volume from a storage volume, the method comprising:

providing block-level access to the storage volume over a

storage hardware interface in accordance with a storage
protocol;

providing the storage volume in a first memory cache, the

first memory cache comprising all data of the storage
volume;

initiating the snapshot of the storage volume with the at

least one processor; and

copying at least a portion of the data of the storage volume

from the first memory cache to a second memory cache
with the at least one processor, the second memory cache
comprising all data of the snapshot volume, the first and
second memory caches being addressable by the at least
one processor over a system bus.

16. The computer-implemented method of claim 15, fur-
ther comprising copying all data blocks of the snapshot vol-
ume, after the snapshot of the storage volume is complete,
from the second memory cache to a storage medium having a
slower write rate than the memory, the memory being solid
state memory.

17. The computer-implemented method of claim 15,
wherein copying the at least a portion of the data of the storage
volume comprises copying all data blocks of the storage
volume from the first memory cache to the second memory
cache in response to initiation of the snapshot of the storage
volume.

18. The computer-implemented method of claim 17, fur-
ther comprising, with the at least one processor:

tracking any updated data blocks in the first memory cache

updated during the copying of all data blocks of the
storage volume from the first memory cache to the sec-
ond memory cache;

ceasing to accept new write requests to the storage volume

after all data blocks of the storage volume are copied;
copying any updated data blocks from the first memory
cache to the second memory cache; and

resuming acceptance of new write requests after the

updated data blocks are copied.

19. The computer-implemented method of claim 15, fur-
ther comprising:



US 8,307,154 B2

21

receiving, with the at least one processor, a plurality of
requests to write updated data blocks to the storage
volume;

writing the updated data blocks with the at least one pro-
cessor to the first memory cache in response to the
requests;

indicating at least one memory region of the first memory
cache that includes the updated data blocks is dirty by
setting at least one dirty flag;

copying data blocks included in the at least one memory
region from the first memory cache to the second
memory cache and clearing the at least one dirty flag;

ceasing to accept new write requests to the storage volume
in response to initiation of the snapshot of the storage
volume if any of the at least one dirty flag is not yet
cleared; and

resuming acceptance of new write requests with the at least
one processor after all remaining data blocks in the at
least one memory region are copied from the first
memory cache to the second memory cache, the at least
aportion of the data of the storage volume including the
all remaining data blocks.

20. The computer-implemented method of claim 15,

wherein copying the at least a portion of the data blocks of the

22

storage volume from the first memory cache to the second
memory cache comprises copying data blocks of the storage
volume subject to a write request received after the snapshot
of the storage volume is initiated, the second memory cache
overlapping the first memory cache except for a portion of the
second memory cache in which the at least a portion of the
data blocks of the storage volume are stored.
21. A computer-implemented method to form a snapshot
volume from a storage volume, the method comprising:
storing the storage volume in a first memory cache with at
least one processor, the first memory cache comprising
all data of the storage volume, the storage volume being
included in one storage device;
initiating the snapshot of the storage volume with the at
least one processor; and
copying at least a portion of the data of the storage volume
from the first memory cache to a second memory cache
with the at least one processor, the second memory cache
comprising all data of the snapshot volume, the first and
second memory caches included in one area of memory
in the one storage device.



